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Optimization problem in standard form

minimize  fy(x)
subject to  fi(x) <
hi(x) =

0, 2=1,....m
0, =2

I
—_
i~

e 2 ¢ R" is the optimization variable
e fo: R" — R is the objective or cost function
e /;:R"—=R,i=1,...,m, are the inequality constraint functions

e h; : R" — R are the equality constraint functions
optimal value:
= inf{fo(x) | fi(x) <0, i=1,....,m, hy(x)=0, i=1,...,p}

e p* = oo if problem is infeasible (no x satisfies the constraints)

e p* = —oo if problem is unbounded below



Optimal and locally optimal points

x is feasible if £ € dom f; and it satisfies the constraints
a feasible x is optimal if fy(x) = p*; X,pt is the set of optimal points

x is locally optimal if there is an R > 0 such that x is optimal for

minimize (over z) fo(2)

subject to fi(2) <0, i=1,....,m, hi(z)=0, i=1,...

lz—zlla < R

examples (with n =1, m =p = 0)



Implicit constraints

the standard form optimization problem has an implicit constraint
m p
r €D = mdomfz- N mdomhi,
i=0 i=1

e we call D the domain of the problem
e the constraints f;(z) <0, h;(x) = 0 are the explicit constraints

e a problem is unconstrained if it has no explicit constraints (m = p = 0)

example:
minimize fo(x) = — Zle log(b; — al'x)

is an unconstrained problem with implicit constraints a! z < b;



Feasibility problem

find T
subject to fi(z) <0, i=1,...,m
hz'((L‘)ZO, i=1,...,p

can be considered a special case of the general problem with fy(z) = 0:

minimize 0
subject to fi(z) <0, i=1,...,m
hi(z)=0, i=1,...,p
e p* = 0 if constraints are feasible; any feasible x is optimal

e p* = oo if constraints are infeasible



Convex optimization problem

standard form convex optimization problem

minimize  fo(z)
subject to f;(z) <0, i=1,...,m

T, _ .
a;z="b; it=1,...,p

e fo. f1. ..., [, are convex; equality constraints are affine

e problem is quasiconvex if f; is quasiconvex (and fi, ..., fm convex)

often written as
minimize  fo(x)

subject to fi(z) <0, i=1,...,m
Az =0

important property: feasible set of a convex optimization problem is convex



example

minimize  fo(z) = 27 + 23
subject to  fi(z) =z1/(1+z3) <0
hl(a:) = ((El - 272)2 =0

e fo is convex; feasible set {(z1,z2) | 1 = —z2 < 0} is convex

e not a convex problem (according to our definition): f; is not convex, h;
is not affine

e equivalent (but not identical) to the convex problem
minimize  z% + 3

subjectto 1 <0
z1+z22=0



Local and global optima

any locally optimal point of a convex problem is (globally) optimal

proof: suppose z is locally optimal, but there exists a feasible y with

fo(y) < fo(z)

x locally optimal means there is an R > 0 such that

z feasible, |[[z—z|: <R = fo(2) > fo(z)

consider z = 0y + (1 — 0)z with 6 = R/(2|ly — z||2)
e |ly—z|[z>R,s00<0<1/2
e 2z is a convex combination of two feasible points, hence also feasible

e |2 —z|2=R/2 and

fo(z) £ 0fo(y) + (1 —0) fo(z) < fo(z)

which contradicts our assumption that z is locally optimal



Optimality criterion for differentiable f;

x is optimal if and only if it is feasible and

Vfo(z) (y —z) >0 for all feasible y

-~V fo(z)

if nonzero, V fo(z) defines a supporting hyperplane to feasible set X at x



e unconstrained problem: z is optimal if and only if

r € dom fo, Vfo((L') =0

e equality constrained problem
minimize fo(z) subjectto Az =0b
x is optimal if and only if there exists a v such that

z € dom fj, Az = b, Vio(z)+ATv =0

e minimization over nonnegative orthant
minimize fo(z) subjectto z >0

x is optimal if and only if

Vfo((l?)z Z 0 Ir; = 0

z € dom fy, z = 0, { Vfo(:z;)zzo z; >0
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Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily
obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

¢ eliminating equality constraints
minimize  fo(z)
subject to fi(z) <0, i=1,...,m
Az =0

is equivalent to

minimize (over 2) fo(F'z + xo)
subject to filFz+29) <0, i=1,...,m

where F' and zg are such that

Ar=b <= 1z = Fz+ zy for some 2
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e introducing equality constraints

minimize  fo(Aoz + bo)

subject to fi(Aiz+b;) <0, i=1,...,m

is equivalent to

minimize (over z, ¥;) fo(vo)

subject to fily;)) <0, i=1,...,m

Yi = Azx + b’i)

i=0,1,...,m

e introducing slack variables for linear inequalities

minimize  fo(z)

subject to alz <b;, i=1,...

is equivalent to

minimize (over z, s) fo(x)
subject to alz + s; = by,

$i 20, 1=1,

y M

1=1,...,m
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e epigraph form: standard form convex problem is equivalent to

minimize (over z, t) t

subject to folz) =t <0
filz) <0, i=1,...,m
Az =b

e minimizing over some variables

minimize  fo(z1,z2)
subject to fi(z1) <0, i=1,...,m

Is equivalent to

minimize  fo(z1)
subject to fi(z1) <0, i=1,...,m

where fo(z1) = infy, fo(z1,z2)
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Linear program (LP)

minimize cfz+d
subject to Gz <X h
Az =0
e convex problem with affine objective and constraint functions

e feasible set is a polyhedron
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Examples

diet problem: choose quantities z1, . .., z, of n foods

e one unit of food j costs c;, contains amount a;; of nutrient ¢

e healthy diet requires nutrient 7 in quantity at least b;

to find cheapest healthy diet,

minimize c¢lz

subjectto Az >b, x>0

piecewise-linear minimization
minimize maxz-=1,,,,,m(aiTx + b;)
equivalent to an LP

minimize ¢
subject to alz+b;<t, i=1,...,m
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Chebyshev center of a polyhedron
Chebyshev center of

P={z|alz<b;, i=1,...,m}
ZLcheb

is center of largest inscribed ball

e alz < b; for all z € B if and only if

T R . .
i STy=0 S
sup{a; (z. +u) | ||ullzs < 7} =a; . + 7|a;||2 < b;

e hence, z., r can be determined by solving the LP

maximize r
: T .
subject to a; z.+Tllailla <b;, i=1,...,m
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Quadratic program (QP)

minimize  (1/2)zTPz+qTz +r
subjectto Gz <X h
Az =0

e P € 8S", so objective is convex quadratic

e minimize a convex quadratic function over a polyhedron

,—Vfu(-'r*)

] 4

17



Examples

least-squares
minimize ||Az — b||2

e analytical solution z* = A™h (A" is pseudo-inverse)

e can add linear constraints, e.g., | <z <X u

linear program with random cost

minimize &'z +~vyzT Yz = Eclz + yvar(c’z)
subjectto Gz <h, Az =50

e ¢ is random vector with mean ¢ and covariance X

T T

e hence, ¢z is random variable with mean &X'z and variance z7 Xz

e v > 0 is risk aversion parameter; controls the trade-off between
expected cost and variance (risk)
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Quadratically constrained quadratic program (QCQP)

minimize (1/2)zTPoz + ¢tz + o
subject to (1/2)z'Pix+qlz+7r; <0, i=1,...,m
Az =b

e P, € S"'; objective and constraints are convex quadratic

o if P,...,P, €87, feasible region is intersection of m ellipsoids and
an affine set
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Second-order cone programming

minimize flz
subject to || Az +billo <cfz+d;, i=1,...,m
Fx=g
(A; € R"*" F € RP*™)

e inequalities are called second-order cone (SOC) constraints:

(Asz + b, cF'z + d;) € second-order cone in R™i !

e for n; = 0, reduces to an LP; if ¢; = 0, reduces to a QCQP

e more general than QCQP and LP
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Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP
minimize ¢’z
subject to alz <b;, i=1,...,m,

there can be uncertainty in ¢, a;, b;

two common approaches to handling uncertainty (in a;, for simplicity)

e deterministic model: constraints must hold for all a; € &;

minimize c¢lz

subject to afz <b;foralla; €&;, i=1,...,m,

e stochastic model: a; is random variable; constraints must hold with
probability n

minimize c¢lz

subject to prob(afz <b;)>1n, i=1,...,m
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deterministic approach via SOCP

e choose an ellipsoid as &;:
& = {(_Lz' + Pu | ||u||2 < 1} ((_Lz' S Rn, P; € Ran)
center is a;, semi-axes determined by singular values/vectors of P;

e robust LP

minimize ¢z

subject to alz <b; Va; €&, i=1,...,m
is equivalent to the SOCP

minimize clz

subject to @iz + |Plz|2<b;, i=1,...,m

(follows from supy,,,<1(@: + Pu)'z = aj z + | P z|2)
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stochastic approach via SOCP

e assume a; is Gaussian with mean a;, covariance ¥; (a; ~ N(a;, X))

T
i

T
1

b, —alzx
prob(alz <b) =& [ —*
2 (RGP

e alz is Gaussian r.v. with mean alz, variance z7¥;z; hence

where ®(z) = (1/v/2) [*_ e *'/2dt is CDF of N(0,1)

e robust LP
minimize ¢’z
subject to prob(alz <b;)>n, i=1,...,m,

with n > 1/2, is equivalent to the SOCP
minimize  c¢Iz
subject to  alz + <I>“1(77)||E:/2:1:||2 <b, i=1,....,m
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Semidefinite program (SDP)

minimize ¢z

subjectto z1Fy+xoFo+ -+ z,F,, +G X0
Az =b

with F;, G € S*

e inequality constraint is called linear matrix inequality (LMI)

e includes problems with multiple LMI constraints: for example,

~

$1F1+"'+$nFn+é'_<0, $1F1++.’Bnﬁn+éj0

is equivalent to single LMI

F, 0 Ey 0 £ 0 G o
by . - il
xl[o F1]+"”2[0 F2]+ +x“[0 Fn]+[0 G]—O
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LP and SOCP as SDP

LP and equivalent SDP

LP: minimize c¢lz SDP: minimize e¢fz

subject to Az <Xb subject to diag(Az —b) <0

(note different interpretation of generalized inequality <)

SOCP and equivalent SDP

SOCP: minimize [Tz
subject to “AzCB + bz”g < Czr.’ll +d;, i=1,...,m

SDP: minimize flz
I : . .
(c;x+d;))I Aix+b; =0, i=1,....

subject to (Aiz +b;,)T cfz+d; | —
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Eigenvalue minimization

minimize Apax(A(z))

where A(z) = Ay + 714, + - + z,A,, (with given A; € §¥)

equivalent SDP
minimize ¢
subject to A(z) <Xt/

e variables z ¢ R", t € R

e follows from
Amax(4) <t <= AXtI
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